Röntgentechnologie
Een persoon screenen op borstkanker, het inspecteren van lasnaden in pijpleidingen en het bekijken van de chemische conditie van kunstwerken. Dit gebeurt doorgaans met dezelfde ‘klassieke’ röntgentechnologie, ontwikkeld in de negentiende eeuw. Deze röntgenstraling heeft echter een vrij lage intensiteit en is vrijwel niet instelbaar, waardoor slechts een momentopname gemaakt kan worden en de informatie vaak niet voldoende gedetailleerd is. Voor geavanceerdere toepassingen, zoals de ontwikkeling van hightech materialen en van nieuwe medicijnen, is ‘coherente’ hoge-intensiteit röntgenstraling tegenwoordig onontbeerlijk. Deze straling wordt momenteel echter alleen geproduceerd in synchrotrons, grote versnellers waarin elektronen met bijna de lichtsnelheid in een km-lange buis voortbewegen. Met deze synchrotronstraling kunnen veranderingen in materialen en weefsels zeer gedetailleerd in tijd en ruimte worden gevolgd. De beperkte beschikbaarheid van met name hoge-energie synchrotronstraling legt echter fikse beperkingen op aan de meetcondities. Voor verschillende toepassingen is reizen naar een synchrotron (alle buiten de Benelux) zelfs onhaalbaar.
Botsingen tussen laser en elektronen
Smart*Light maakt gebruik van nieuwe versnellertechnologie om laserlicht om te zetten in intense en coherente röntgenstraling door deze te laten botsen (via ‘inverse Compton scattering’) met een hoogenergetische bundel elektronen. Met deze straling kunnen vervolgens state-of-the-art analyses worden uitgevoerd die van waarde zijn voor diverse maatschappelijke sectoren. Hoewel Smart*Light niet tot doel heeft bestaande synchrotronfaciliteiten te vervangen, zal het dankzij het compacte ontwerp wel een belangrijke aanvulling hierop vormen. Gebruikers zullen daardoor minder afhankelijk zijn van de schaarse meettijd bij grote synchrotrons.
Materiaalonderzoek en verborgen lagen in schilderijen
Vooral het mobiele karakter is een belangrijk voordeel: de gehele opstelling zal nog geen vier meter lang worden en is daardoor naar believen in elk lab te gebruiken. Het instrument kan bijvoorbeeld bij een specifieke complexe meetopstelling worden neergezet in plaats van andersom. Het verband tussen procescondities, microstructuur en materiaaleigenschappen kan zo effectiever worden onderzocht. Dit vereenvoudigt de ontwikkeling van nieuwe materialen, zodat bijvoorbeeld vermoeiing en corrosie bij schepen beter kan worden tegengegaan, of de toepasbaarheid van 3D-geprinte materialen kan worden vergroot. Op termijn biedt Smart*Light unieke mogelijkheden voor medische diagnostiek in ziekenhuizen en voor onderzoek naar topkunstwerken van o.a. Rubens, Vermeer en Brueghel in musea. Zo is de mogelijkheid om de chemische samenstelling van kunstwerken laag voor laag te analyseren niet alleen van belang voor de conservering van kunst maar bijvoorbeeld ook voor authenticiteitsonderzoek.